Urochordate serpins are Classified into Six Groups Encoded by Exon-Intron Structures, Microsynteny and Bayesian Phylogenetic Analyses
نویسندگان
چکیده
Members of serpin superfamily are involved in wide array of cellular processes to control proteolytic activities of eukaryotic organisms. Vertebrate serpins are extensively studied and reported to be classified into six groups (V1-V6) based on gene structures. However, there is no study conducted for serpins in urochordates (the closest living invertebrates related to vertebrates) to date. To unravel further the phylogenetic history of serpin genes, we characterized serpin genes from two urochordates (Ciona intestinalis and Ciona savignyi). There are 11 and 5 serpins in the C. intestinalis and C. savignyi, respectively. The exon/intron structures and genomic locus comparisons together with sequence phylogenetic analysis, suggested that urochordate serpins are classified into six groups (U1-U6), different from six groups (V1-V6) of vertebrate serpins. Human α1-antitrypsin shared lower sequence identities and similarities with urochordates serpins ranged from 14-29% and 30-49%, respectively. Based on protein sequences, genes and genomic architectures, we conclude that these two urochordates do not contain a single copy of genuine ortholog of the vertebrate serpins.
منابع مشابه
Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY
The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1-V6), based on three independent biological features-genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based o...
متن کاملPhylogenetic analyses of amino acid variation in the serpin proteins.
Phylogenetic analyses of 110 serpin protein sequences revealed clades consistent with independent phylogenetic analyses based on exon-intron structure and diagnostic amino acid sites. Trees were estimated by maximum likelihood, neighbor joining, and partial split decomposition using both the BLOSUM 62 and Jones-Taylor-Thornton substitution matrices. Neighbor-joining trees gave results closest t...
متن کاملLoss of Chloroplast trnLUAA Intron in Two Species of Hedysarum (Fabaceae): Evolutionary Implications
Previous studies have indicated that in all land plants examined to date, the chloroplast gene trnLUAA isinterrupted by a single group I intron ranging from 250 to over 1400 bp. The parasitic Epifagus virginiana haslost, however, the entire gene. We report that the intron is missing from the chloroplast genome of twoarctic species of the legume genus Hedysarum (H. alpinum, H. ...
متن کاملIncongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails.
Using DNA sequence data from multiple genes (often from more than one genome compartment) to reconstruct phylogenetic relationships has become routine. Augmenting this approach with genomic structural characters (e.g., intron gain and loss, changes in gene order) as these data become available from comparative studies already has provided critical insight into some long-standing questions about...
متن کاملGenome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family.
We made genome-wide analyses to explore the evolutionary process of the SBP-box gene family. We identified 120 SBP-box genes from nine species representing the main green plant lineages: green alga, moss, lycophyte, gymnosperm and angiosperm. A maximum-likelihood phylogenetic tree was constructed using the protein sequences of the DNA-binding domain of SBP-box genes (SBP-domain). Our results re...
متن کامل